論文採録(Sensors)

修士2年の齋藤君の論文がSensors誌に採録されました.

  • Mitsuaki Saito and Kaori Fujinami. “New Position Candidate Identification via Clustering toward an Extensible On-Body Smartphone Localization System”, Sensors 2021, 21(4), 1276; https://doi.org/10.3390/s21041276 (link)

この論文は以下の携帯機器の所持位置逐次追加フレームワークの図中で,CとDの部分の実現方法に焦点を当てた研究です.新規性検出(A)で未知位置と判定されたデータがNovelty sample pool(C)に蓄積され,Dにおいてクラスタ数をあらかじめ決める必要がないクラスタリング手法であるDBSCANを用いて1つ以上の新規(未知)の所持位置を検出するというものです.新規の所持位置が検出されれば,あとは利用者に正解ラベル付けを依頼することで,利用中にその人特有の所持位置をシステムに追加して利用できるようになります.

携帯機器の所持位置の逐次追加フレームワーク.

なお,Aの構成方法については以下の論文で述べています.

  • Mitsuaki Saito and Kaori Fujinami; “Unknown On-Body Device Position Detection Based on Ensemble Novelty Detection”, Sensors and Materials, Vol. 32, No. 1, pp. 27-40, 2020. (link)
  • Mitsuaki Saito and Kaori Fujinami; “Evaluation of Novelty Detection Methods in On-Body Smartphone Localization Problem”, In Proceedings of the 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE 2019), pp. 470-474, 16 October, 2019.
  • 齋藤光明,藤波香織;“アンサンブル型Novelty Detectionによる未知の携帯機器所持位置の検出”,情報処理学会ユビキタスコンピューティングシステム研究会 第62回研究発表会(UBI62),情報処理学会研究報告 Vol. 2019-UBI-62,No. 2,2019年6月6日.

Dの予備検証は以下の論文で述べています.

  • Mitsuaki Saito and Kaori Fujinami; “Applicability of DBSCAN in Identifying the Candidates of New Positions in on-Body Smartphone Localization Problem”, In Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE 2020), October 2020.
  • Mitsuaki Saito and Kaori Fujinami; “New Class Candidate Generation applied to On-Body Smartphone Localization”, In Activity and Behavior Computing. Smart Innovation, Systems and Technologies, vol. 204, pp. 81-98, Springer Singapore, 2021. (presented in the 2nd International Conference on Activity and Behavior Computing (ABC2020), 26-29 August 2020.)

対外発表(ABC2020)

M2の齋藤君が下記のタイトルでInternational Conference on Activity and Behavior Computing (ABC)で発表を行いました.

  • Mitsuaki Saito and Kaori Fujinami. “Evaluation of New Class Candidate Generation Methods in On-Body Smartphone Localization Problem”, in International Conference on Activity and Behavior Computing (ABC2020), August 28, 2020.
携帯端末の使用場所の逐次追加フレームワーク

システムが未学習の携帯機器の所持位置をユーザが利用している最中に検出して,認識対象に追加するフレームワークを研究中です,これまで上の図のAについて新規性検出(Novelty Detection)技術を使う方法,とくにアンサンブル型の検出器の利用を提案してきましたが,本発表ではその先のD(異常サンプル除外), E(次元削減), F(クラスタリング)の実現方法を検証しました.特にクラスタリングについてはクラスタ数を決定する方法を検討しました.

論文採択(Sensors and Materials)

M1の齋藤君の論文が論文誌(Sensors and Materials)に採録されオンラインで公開されました.[Online]

  • Mitsuaki Saito and Kaori Fujinami, Unknown On-Body Device Position Detection Based on Ensemble Novelty Detection, Sens. Mater., Vol. 32, No. 1, 2020, p. 27-40.
Ensemble Novelty Detectorの構成

機械学習において分類や回帰問題で威力を発揮しているアンサンブル手法を新規性検出(Novelty Detection)という技術への適用法を提案しました.S個のNovelty Detectorの判定により最終的な新規性の判定を下しますが,その際に単なる多数決ではなく,訓練データから最適な判定閾値を決定する手法を提案しています.

これによりスマートフォンの未知の持ち運び場所の検出を単体のNovelty Detectorより高精度に行うことが出来ます.また,一般的な分類問題で既知クラスの判定を高精度に行うための前処理として未知クラス除外を行うようなケースにも利用可能と考えています.